A Brief History of Computer Science

4700 HUNDRED YEARS AGO......

Sumerians invented the abacus Sand, lines, pebbles Sexagesimal Base 60 still used today Time, distance How do you count like that?

SIDE TRIP.....

Factors of 60 are

1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60

60 is a Superior Highly Composite Number

(number theory stuff, more factors than other numbers scaled relative to itself)

So What???

With that many factors, fractions are simplified Example: Divide an hour into many even parts

SIDE TRIP.....

It is also a Colossally Abundant Number

(instead of factors, lots of divisors)

SIDE TRIP.....

1	L 2	
2	2 6	3
3	3 12	2
4	1 60	5
5	120	2
6	360	3
7	2520	7
8	5040	2
g	55440	11
10	720720	13
11	1441440	2
12	4324320	3
13	21621600	5
14	367567200	17
15	6983776800	19

Antikythera mechanism invented Analog computer - what is that?

John Napier Logarithms - used for what

Blaise Pascal
Pascalines –
for his father

Charles Babbage

Analytic engine - for what

Expandable memory

Arithmetic unit

Logic unit, loops, conditional branching

Augusta Ada King, Countess of Lovelace

Father was?

Known as Ada Lovelace

Translated an Italian Engineer's paper

(on the analytic engine)

Wrote notes longer than the paper Note G recognized as the world's first

algorithm (for computing Bernoulli numbers)

YOUNG ADA LOVELACE

George Boole –
Boolean Algebra –
aided in **modeling** computations
Joseph Jacquard
Loom
Punched card
Herman Hollerith (Computing-Tabulating-Recording)

Before 1920 **computers** were human beings doing complex calculations for Commerce, Government and Research

After 1920 **computing machine** began to refer to hardware that replaced human computers

Mathematicians began analyzing these kinds of machines

Church-Turing hypothesis

"Mathematical method was 'effective' if it could be set out as a set of instructions that a human could follow with pencil and paper"

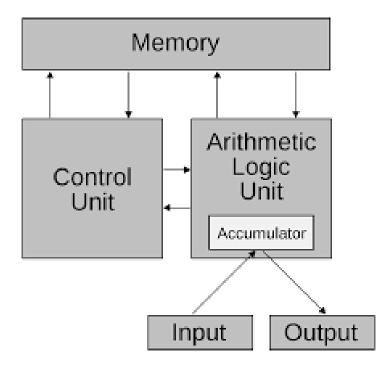
By the late 1940s machines did that

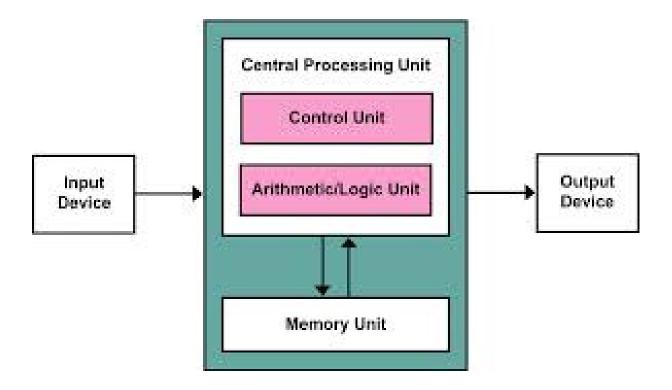
Alan Mathison Turing
Invented a hypothetical device (model)
used to study computing and computers
The Turing machine
This is really to model computation, not
to model computers

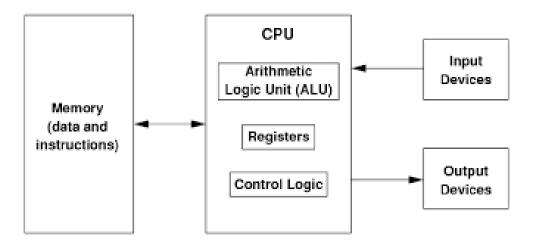
Computer science is really mostly about computation and understanding it

The Universal Turing Machine Can model all Turing machines This is considered by most to be the fundamental theoretical breakthrough in computer science The stored program computer evolved from this notion of a Universal Turing Machine

Jon Von Neumann
Father of the computer
Renaissance guy, polyglot
Data and programs can be the same thing
and all stored in memory
Computers are made up of parts
Main memory, accumulator, ALU


END OF PART 1


And you still haven't written a single line of code


HARDWARE & SOFTWARE

HW - physical SW - not physical

Memory –
binary digits – bits – a bit can be 0 or 1
byte – 8 bits

- 1. User Interface
- 2. Auxilary Input/Output (I/O) Devices
- 3. Auxiliary Storage Devices
- 4. Network Connection
- 5. Internal Memory
- 6. Central Processing Unit

SOFTWARE

- 1. System Software
 - 1. Operating System
 - 2. Network Operating System
 - 3. Compilers/Interpreters
 - 4. User Interface
- 2. Applications Software
 - 1. 'Office' (examples)
 - 2. Multimedia
 - 3. Database
 - 4. Everything we write

- 1. First, let's count
- 2. Base 10 0,1,2,3,4,5,6,7,8,9
- 3. Base 2 0,1
- 4. Base 5 0,1,2,3,4
- 5. Base 8 0,1,2,3,4,5,6,7
- 6. Base 16 0,1,2,3,4,5,6,7,8,9,.....

- 1. Since a byte is 8 bits......
- 2. Possible numbers?
- 3. Negative numbers?

Base 10

COUNTING Base 10 Base 2

decimal	binary
0	0
1	1
2	10
3	11
4	100
5	101
6	110
7	111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111
16	10000
17	10001
18	10010
19	10011
20	10100
21	10101
22	10110
23	10111
24	11000
25	11001
26	11010
27	11011
28	11100
29	11101
30	11110
31	11111
32	100000
33	100001
34	100010

decimal	binary	octal	
0	0	0	
1	1	1	
2	10	2	
3	11	2 3 4 5 6	
4	100	4	
5	101	5	
6	110	6	
7	111	7	
8	1000	10	
9	1001	11	
10	1010	12	
11	1011	13	
12	1100	14	
13	1101	15	
14	1110	16	
15	1111	17	
16	10000	20	
17	10001	21	
18	10010	22	
19	10011	23	
20	10100	24	
21	10101	25	
22	10110	26	
23	10111	27	
24	11000	30	
25	11001	31	
26	11010	32	
27	11011	33	
28	11100	34	
29	11101	35	
30	11110	36	
31	11111	37	
32	100000	40	
33	100001	41	
34	100010	42	

Dasc 10	Dusc =	Dusc o	Dasc 10
decimal	binary	octal	hexadecimal
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F
16	10000	20	10
17	10001	21	11
18	10010	22	12
19	10011	23	13
20	10100	24	14
21	10101	25	15
22	10110	26	16
23	10111	27	17
24	11000	30	18
25	11001	31	19
26	11010	32	1A
27	11011	33	1B
28	11100	34	1C
29	11101	35	1D
30	11110	36	1E
31	11111	37	1F
32	100000	40	20
33	100001	41	21
34	100010	42	22

Base 10 Base 2 Base 8 Base 16

CHARACTERS

- 1. Need to manipulate more than numbers
- 2. How do you represent characters?
- 3. ASCII 8 bits
 256 combinations
- 4. Unicode 16 bits 65,536 combinations

'OTHER' STUFF

- 1. sound
- 2. images
- 3. Video
 - 1. Compression
 - 2. Standards?
- 4. What else needs to be modeled?
 - 1. Program instructions
- 5. Memory

PROGRAMMING LANGUAGES

- 1. 1st Generation (1940s-1950s)
 - 1. Machine Language
- 2. 2nd Generation (1950s-present)
 - 1. Assembly Languages
- 3. 3rd Generation (1950s-present)
 - 1. High Level Languages
 - 1. FORTRAN, COBOL, BASIC, C, PL/1
 - 2. Pascal, HAL/S
 - 3. C++, Smalltalk, Python, Java
 - 2. Compiler/Interpreter

SW DEVELOPMENT LIFE CYCLE

- 1. Waterfall model
 - 1. Analysis
 - 2. Design
 - 3. Implementation
 - 4. Integration
 - 5. Deploy/Maintain
- 2. Agile

OBJECT ORIENTED PROGRAMMING

END OF PART 2

And you **SLACKERS** still haven't written a single line of code