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Abstract classes are used to
define a class that will be 
used only to build new 
classes.

No objects will ever be 
instantiated from an abstract 
class.
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Mammal (abstract class)

Human Whale Cow
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Any sub class that extends a
super abstract class must 
implement all methods defined 
as abstract in the super class
unless the extending class is 
an abstract class.
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Abstract classes are typically used 
when you know quite a bit about an
Object and what you want the Object 
to do, but yet there are still a few
unknowns.
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public abstract class Monster
{

private String name;

public Monster( String nm )   
{

name = nm;
}

public abstract String talk( );

public String toString() 
{

return name + " says  "  + talk();
}

}
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Why define talk as abstract?

public abstract String talk( );

Does each Monster say
the exact same thing?
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public class Vampire extends Monster
{
public Vampire( String name )
{

super(name);
}

public String talk()
{

return  "\"I want to drink your blood!\"";
}

}
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public class Ghost extends Monster
{
public Ghost( String name )
{

super(name);
}

public String talk()
{

return  " \"Where did I go?\"\n\n";
}

}
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Mammal (abstract class)

Human Whale Cow
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Monster (abstract class)

Vampire Ghost Witch
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Polymorphism - the ability of one 
general thing to behave like other
specific things.
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//instance variable
private Monster[] monsters;

//ask for the number of monsters
//get the number of monsters

for ( int j=0; j < monsters.length; j++ )
{

out.print("Enter Monster " + j + " Name :: ");
int r = (int)( Math.random() * 3 );
if(r==0)

monsters[j] = new Vampire(kb.nextLine());
else if(r==1)

monsters[j] = new Witch(kb.nextLine());
else

monsters[j] = new Ghost(kb.nextLine());
}
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public String monstersTalk( )
{

String out = "";
for ( int i=0; i<monsters.length; i++ )

out += monsters[i].talk();
return out;

}
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public String toString( )
{

String output="";
for ( int i=0; i<monsters.length; i++ )

output+=monsters[i].toString();
return output;

}
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Description Interface Abstract 
Class

Can contain abstract 
methods?

Yes Yes

Can contain non-
abstract methods?

No Yes

Can contain 
constructors?

No Yes

Can be instantiated? No No
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Description Interface Abstract 
Class

Can be extended? Yes Yes

Can be implemented? Yes No
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Description Interface Abstract 
Class

Can contain instance 
variables?

No Yes

Can contain final 
instance variables?

No Yes

Can contain final class 
variables?

Yes Yes

Can contain class 
variables?

No Yes
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Classes extend Classes
Interfaces extend Interfaces
SAME extends SAME

Classes implement Interfaces
CLASS implements INTERFACE
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Method calls are locked down at compile 
time based on the type of reference used.

Object a = "apluscompsci";
int x = a.length();             //syntax error 
System.out.println( x ); 

x = ((String)a).length();   //add a cast
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Specific types of objects associated with 
method calls are determined at run time, 
creating polymorphic behavior.

public void monstersTalk( )
{

out.print("monstersTalk\n\n");
for ( int i=0; i<monsters.length; i++ )

out.println( monsters[i].talk() );

}
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public double processList( List<Integer> list )
{

double sum = 0;
for( int i = 0; i < list.size(); i++ )

sum += list.get(i);
return sum / list.size();

}

Calls to processList() could be made with an ArrayList, 
LinkedList, Vector, or Stack as all four classes 
implement the List interface, sharing a common set of 
methods.
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Static is a reserved word use to designate
something that exists as part of a class, 
but not part of a specific object.

Static variables and methods exist even
if no object of that class has been
instantiated.
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Static means one!   

All Objects will share the same static 
variables and methods.

Static variables are also called
class variables.
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class Monster
{

private String myName;
private static int count = 0;   

public Monster() {
myName ="";
count++;

}
public Monster( String name ) {
myName = name;
count++;

}
}

all Monster share count
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