

© A+ Computer Science - www.apluscompsci.com

Abstract classes are used to
define a class that will be
used only to build new
classes.

No objects will ever be
instantiated from an abstract
class.

© A+ Computer Science - www.apluscompsci.com

Mammal (abstract class)

Human Whale Cow

© A+ Computer Science - www.apluscompsci.com

Any sub class that extends a
super abstract class must
implement all methods defined
as abstract in the super class
unless the extending class is
an abstract class.

© A+ Computer Science - www.apluscompsci.com

Abstract classes are typically used
when you know quite a bit about an
Object and what you want the Object
to do, but yet there are still a few
unknowns.

© A+ Computer Science - www.apluscompsci.com

public abstract class Monster
{

private String name;

public Monster(String nm)
{

name = nm;
}

public abstract String talk();

public String toString()
{

return name + " says " + talk();
}

}

© A+ Computer Science - www.apluscompsci.com

Why define talk as abstract?

public abstract String talk();

Does each Monster say
the exact same thing?

© A+ Computer Science - www.apluscompsci.com

public class Vampire extends Monster
{
public Vampire(String name)
{

super(name);
}

public String talk()
{

return "\"I want to drink your blood!\"";
}

}

© A+ Computer Science - www.apluscompsci.com

public class Ghost extends Monster
{
public Ghost(String name)
{

super(name);
}

public String talk()
{

return " \"Where did I go?\"\n\n";
}

}

© A+ Computer Science - www.apluscompsci.com

Mammal (abstract class)

Human Whale Cow

© A+ Computer Science - www.apluscompsci.com

Monster (abstract class)

Vampire Ghost Witch

© A+ Computer Science - www.apluscompsci.com

Polymorphism - the ability of one
general thing to behave like other
specific things.

© A+ Computer Science - www.apluscompsci.com

//instance variable
private Monster[] monsters;

//ask for the number of monsters
//get the number of monsters

for (int j=0; j < monsters.length; j++)
{

out.print("Enter Monster " + j + " Name :: ");
int r = (int)(Math.random() * 3);
if(r==0)

monsters[j] = new Vampire(kb.nextLine());
else if(r==1)

monsters[j] = new Witch(kb.nextLine());
else

monsters[j] = new Ghost(kb.nextLine());
}

© A+ Computer Science - www.apluscompsci.com

public String monstersTalk()
{

String out = "";
for (int i=0; i<monsters.length; i++)

out += monsters[i].talk();
return out;

}

© A+ Computer Science - www.apluscompsci.com

public String toString()
{

String output="";
for (int i=0; i<monsters.length; i++)

output+=monsters[i].toString();
return output;

}

© A+ Computer Science - www.apluscompsci.com

© A+ Computer Science - www.apluscompsci.com

Description Interface Abstract
Class

Can contain abstract
methods?

Yes Yes

Can contain non-
abstract methods?

No Yes

Can contain
constructors?

No Yes

Can be instantiated? No No

© A+ Computer Science - www.apluscompsci.com

Description Interface Abstract
Class

Can be extended? Yes Yes

Can be implemented? Yes No

© A+ Computer Science - www.apluscompsci.com

Description Interface Abstract
Class

Can contain instance
variables?

No Yes

Can contain final
instance variables?

No Yes

Can contain final class
variables?

Yes Yes

Can contain class
variables?

No Yes

© A+ Computer Science - www.apluscompsci.com

Classes extend Classes
Interfaces extend Interfaces
SAME extends SAME

Classes implement Interfaces
CLASS implements INTERFACE

© A+ Computer Science - www.apluscompsci.com

© A+ Computer Science - www.apluscompsci.com

Method calls are locked down at compile
time based on the type of reference used.

Object a = "apluscompsci";
int x = a.length(); //syntax error
System.out.println(x);

x = ((String)a).length(); //add a cast

© A+ Computer Science - www.apluscompsci.com

Specific types of objects associated with
method calls are determined at run time,
creating polymorphic behavior.

public void monstersTalk()
{

out.print("monstersTalk\n\n");
for (int i=0; i<monsters.length; i++)

out.println(monsters[i].talk());

}

© A+ Computer Science - www.apluscompsci.com

public double processList(List<Integer> list)
{

double sum = 0;
for(int i = 0; i < list.size(); i++)

sum += list.get(i);
return sum / list.size();

}

Calls to processList() could be made with an ArrayList,
LinkedList, Vector, or Stack as all four classes
implement the List interface, sharing a common set of
methods.

© A+ Computer Science - www.apluscompsci.com

© A+ Computer Science - www.apluscompsci.com

Static is a reserved word use to designate
something that exists as part of a class,
but not part of a specific object.

Static variables and methods exist even
if no object of that class has been
instantiated.

© A+ Computer Science - www.apluscompsci.com

Static means one!

All Objects will share the same static
variables and methods.

Static variables are also called
class variables.

© A+ Computer Science - www.apluscompsci.com

class Monster
{

private String myName;
private static int count = 0;

public Monster() {
myName ="";
count++;

}
public Monster(String name) {
myName = name;
count++;

}
}

all Monster share count

© A+ Computer Science - www.apluscompsci.com

