

© A+ Computer

Science -

www.apluscompsci.co

m

© A+ Computer Science - www.apluscompsci.com

The heap is essentially an array-based
binary tree with either the biggest
or smallest element at the root.

© A+ Computer Science - www.apluscompsci.com

Every parent in a Heap will always be
smaller or larger than both of its children.

This rule will hold true for every level of
the heap.

© A+ Computer Science - www.apluscompsci.com

In a complete tree, every level that can
be filled is filled. Any levels that are not
full have all nodes shifted as far left
as possible.

© A+ Computer Science - www.apluscompsci.com

A Heap is a complete tree.

© A+ Computer Science - www.apluscompsci.com

A min heap is a binary tree that has
a root smaller than all of its children.

© A+ Computer Science - www.apluscompsci.com

A max heap is a binary tree that has
a root larger than all of its children.

© A+ Computer Science - www.apluscompsci.com

15

11

7 8

10

9

root

root

15 11 10 7 8 9

© A+ Computer Science - www.apluscompsci.com

Because a heap will always be a
complete tree, it makes sense to
use an array to store the values.

root

15 11 10 7 8 9

© A+ Computer Science - www.apluscompsci.com

left = i*2+1 right=i*2+2

left child of root = [0 *2 + 1]
right child of root = [0 *2 + 2]

root

15 11 10 7 8 9

© A+ Computer Science - www.apluscompsci.com

The easiest way to add a new item to a
heap implemented with an array is to
add the new value at the end of the array
and then move the new item up the tree
as far as it needs to go.

add will use swapUp to restructure
the tree so that it remains a heap.

© A+ Computer Science - www.apluscompsci.com

15

11

7 8

10

9

root

12

root

15 11 10 7 8 9 12

© A+ Computer Science - www.apluscompsci.com

15

11

7 8

12

9

root

10

root

15 11 12 7 8 9 10

© A+ Computer Science - www.apluscompsci.com

int bot = length-1
while(bot>0)
{
 int parent = (bot-1)/2
 if list[parent] < list[bot]
 swap list[parent] and list[bot]
 bot = parent
 else
 stop
}

© A+ Computer Science - www.apluscompsci.com

swapUp starts access at the bottom of tree

swapUp checks to see that the bottom index has not
gone past the root of tree. The root is at index position 0.

Next, locate bottom’s parent = (bot–1) / 2.

Check if bottom is larger than its parent
 If it is  swap bottom and parent

Finally, set bottom to parent and start the process over.

This method can be written iteratively or recursively.

© A+ Computer Science - www.apluscompsci.com

When you remove from a Heap, you are taking off
the largest value or value with the highest priority.

You just take the top value off and save it.

Next, you move the last item in the tree to the root
and move the new root down the tree as far as it
can go.

remove will use swapDown to restructure the tree
so it remains a heap.

© A+ Computer Science - www.apluscompsci.com

int root=0;
while(root<list.size())

 define max and left and right indexes

 if left child exists
 if right child exists
 find max
 else
 max is left
 else stop

 if max > root
 swap
 root = max
 else stop

© A+ Computer Science - www.apluscompsci.com

swapDown starts access at the root

swapDown first generates the index values of the root’s
children. root * 2 + 1 root * 2 + 2

Make sure root is less than bottom
Find the largest child
Determine if largest child is larger than root
 If it is  swap largest child and root

Root is set to the index of the largest child and the process
starts over again.

This method can be written iteratively or recursively.

© A+ Computer Science - www.apluscompsci.com

© A+ Computer Science - www.apluscompsci.com

A PriorityQueue is a queue structure that
organizes the data inside by the natural
ordering or by some specified
criteria.

The Java PriorityQueue is a min heap
as it removes the smallest items first.

The Java PriorityQueue stores Comparables.

© A+ Computer Science - www.apluscompsci.com

PriorityQueue
frequently used methods

Name Use

add(x) adds item x to the pQueue

remove() removes and returns min priority item

peek() returns the min item with no remove

size() returns the # of items in the pQueue

isEmpty() checks to see if the pQueue is empty

© A+ Computer Science - www.apluscompsci.com

PriorityQueue<Integer> pQueue;
pQueue = new PriorityQueue<Integer>();

pQueue.add(11);
pQueue.add(10);
pQueue.add(7);
out.println(pQueue);

OUTPUT

[7, 11, 10]

© A+ Computer Science - www.apluscompsci.com

PriorityQueue<Integer> pQueue;
pQueue = new PriorityQueue<Integer>();

pQueue.add(11);
pQueue.add(10);
pQueue.add(7);
out.println(pQueue);
out.println(pQueue.remove());
out.println(pQueue);

OUTPUT

[7, 11, 10]
7
[10, 11]

© A+ Computer Science -

www.apluscompsci.com

© A+ Computer Science - www.apluscompsci.com

PriorityQueue<Integer> pQueue;
pQueue = new PriorityQueue<Integer>();

pQueue.add(11);
pQueue.add(10);
pQueue.add(7);

while(!pQueue.isEmpty())
{
 out.println(pQueue.remove());
}

OUTPUT

7
10
11

© A+ Computer Science -

www.apluscompsci.com

© A+ Computer Science - www.apluscompsci.com

© A+ Computer

Science -

www.apluscompsci.co

m

