

© A+ Computer Science - www.apluscompsci.com

© A+ Computer Science - www.apluscompsci.com

Big-O notation is an assessment of an
algorithm’s efficiency. Big-O notation
helps gauge the amount of work that
is taking place.

Common Big-O Notations :
O(1) O(Log2N)
O(2N) O(N2)
O(N Log2N) O(N)
O(Log2N) O(N3)

© A+ Computer Science - www.apluscompsci.com

Big-O
frequently used notations

Name Notation

constant O(1)

logarithmic O(log2N)

linear O(N)

linearithmic O(N log2N)

quadratic O(N2)

exponential O(Nn)

© A+ Computer Science - www.apluscompsci.com

One of the main reasons for consulting
Big-O is to make decisions about which
algorithm to use for a particular job.

If you are designing a program to
sort 2 trillion data base records, writing
an N2 sort instead of taking the time
to design and write an N*LogN
sort, could cost you your job.

© A+ Computer Science - www.apluscompsci.com

In order to properly apply a BigO notation,
it is important to analyze a piece of code
to see what the code is doing and how
many times it is doing it.

© A+ Computer Science - www.apluscompsci.com

int fun = //some input
if(fun>30){
 out.println("whoot");
else if(fun<=30){
 out.println("fly");
}

How much
work can
take place
when this
code runs?

© A+ Computer Science - www.apluscompsci.com

int run = //some input
for(int go=1; go<=run; go++)
{
 int fun = //some input
 if(fun>30){
 out.println("whoot");
 else if(fun<=30){
 out.println("fly");
 }
}

How much
work can
take place
when this
code runs?

© A+ Computer Science - www.apluscompsci.com

int run = //some input

for(int go=1; go<=run; go++)
{
 int fun = //some input
 if(fun>30){
 out.println("whoot");
 else if(fun<=30){
 out.println("fly");
 }
}

Runs n times

Each time the
loop runs, the if
prints.

Total work – n(run) * 1

© A+ Computer Science - www.apluscompsci.com

The formal definition for BigO is :

BigO is bound(N) if runTime(N) <= c * bound(N)

The actual runtime of an algorithm is the
upper bound if the actual runtime is less than
c times an upper bound with c being a non-negative
constant and using any value of N greater than n0.

Say what?

© A+ Computer Science - www.apluscompsci.com

n/2*1 <= ??

int run = //some input

for(int go=1; go<=run; go=go+2)
{
 int fun = //some input
 if(fun>30){
 out.println("whoot");
 else if(fun<=30){
 out.println("fly");
 }
}

runTime(N) – n/2 * 1

bound(N) – ????

runTime(N) <= c * bound(N)

© A+ Computer Science - www.apluscompsci.com

n/2*1 <= c * log2n

n0 = 2
c = 3

50/2*1 <= 3*6
25 <= 18

int run = 50

for(int go=1; go<=run; go=go+2)
{
 int fun = //some input
 if(fun>30){
 out.println("whoot");
 else if(fun<=30){
 out.println("fly");
 }
}

O(log2n) is too small.

runTime(N) <= c * bound(N)

© A+ Computer Science - www.apluscompsci.com

n/2*1 <= c * n

n0 = 2
c = 3

50/2*1 <= 3*50
25 <= 150

int run = 50

for(int go=1; go<=run; go=go+2)
{
 int fun = //some input
 if(fun>30){
 out.println("whoot");
 else if(fun<=30){
 out.println("fly");
 }
}

O(n) is just right.

runTime(N) <= c * bound(N)

© A+ Computer Science - www.apluscompsci.com

n/2*1 <= c * n2

n0 = 2
c = 3

50/2*1 <= 3*2500
25 <= 7500

int run = 50

for(int go=1; go<=run; go=go+2)
{
 int fun = //some input
 if(fun>30){
 out.println("whoot");
 else if(fun<=30){
 out.println("fly");
 }
}

O(n2) is too big.

runTime(N) <= c * bound(N)

© A+ Computer Science - www.apluscompsci.com

The BigO determined for a section of code
should be the most restrictive BigO possible
so that the BigO grows at a faster rate than
the actual runtime of the code.

For the previous example, N is the most
appropriate BigO as it meets the criteria
and is the most restrictive BigO that would
match the formal definition.

© A+ Computer Science - www.apluscompsci.com

© A+ Computer Science - www.apluscompsci.com

int n = ray.size();
for(int i=0; i<n; i++)
 out.println(ray.get(i));

This one is clearly N as we access all N items.

Big O Notation – O(N)

ray is an
ArrayList!

© A+ Computer Science - www.apluscompsci.com

int n = ray.size();
for(int i=0; i<n; i++)
 out.println(ray.get(i));

Which
roof/bound
fits best?

O(N)

O(N2)

 CODE

for . . . N
 out . . .

O(log2N)

 CODE

for . . . N
 out . . .

 CODE

for . . . N
 out . . .

© A+ Computer Science - www.apluscompsci.com

int n = ray.size();
for(int i=0; i<n; i+=2)
 out.println(ray.get(i));

This example is not as easy as the last.

This code will print N/2 items.

Big O Notation – O(N)

ray is an
ArrayList!

© A+ Computer Science - www.apluscompsci.com

int n = ray.size();
for(int i=0; i<n; i+=2)
 out.println(ray.get(i));

Which
roof/bound
fits best?

O(N)

O(N2)

 CODE

for . . . N
 out . . .

O(log2N)

 CODE

for . . . N
 out . . .

 CODE

for . . . N
 out . . .

© A+ Computer Science - www.apluscompsci.com

N/2*1 - N is the dominant term as N gets
larger. Because N dominates the expression
the constants can be dropped.

N/2*1 == N

© A+ Computer Science - www.apluscompsci.com

int n = ray.size();
for(int i=0; i<n; i++)
 for(int j=0; j<n;j++)
 out.println(ray.get(i));

Big-O Notation – N*N

N*N units of work are needed to print
each N*N element.

ray is an
ArrayList!

© A+ Computer Science - www.apluscompsci.com

int n = ray.size();
for (int i=0; i<n; i++)
 for(int j=1; j<n;j*=2)
 out.println(ray.get(i));

ray is an
ArrayList!

Big-O Notation – N*Log2(N)

N * log2N units of work are needed to print
each element log2 times.

© A+ Computer Science - www.apluscompsci.com

© A+ Computer Science - www.apluscompsci.com

traverse all spots O(N)

search for an item O(N) or O(Log2N)

remove any item O(N)
 location unknown

get any item O(1)
 location unknown

add item at the end O(1)

add item at the front O(N)

1 5 8 9 11

An array is a collection of like variables.

If the array is
sorted, a binary
search would be
the best choice
and result in a
log2N runtime.

© A+ Computer Science - www.apluscompsci.com

traverse all nodes O(N)

search for an item O(N)

remove any item O(N)
 location unknown

get any item O(N)
 location unknown

add item at the end O(N)

add item at the front O(1)

A single linked node has a reference to the next
node only. A single linked node has no reference
to the previous node.

10

© A+ Computer Science - www.apluscompsci.com

traverse all nodes O(N)

search for an item O(N)

remove any item O(N)
 location unknown

get any item O(N)
 location unknown

add item at the end O(1)

add item at the front O(1)

A double linked node has a reference to the next

node and to the previous node.

10

© A+ Computer Science - www.apluscompsci.com

traverse all nodes O(N)

search for an item O(log2N)

remove any item O(log2N)
 location unknown

get any item O(log2N)
 location unknown

add item at the end O(log2N)

add item at the front O(1)

A binary tree node has a reference to its left and
right nodes. Nodes are ordered.

These notations assume the tree is balanced or
near balanced.

© A+ Computer Science - www.apluscompsci.com

If you insert items into a Binary Search Tree
in order, the tree becomes a linked list.

1 - >2-> 3-> 4-> 5-> 6-> 7->

An unbalanced tree would have a
worst case of O(N) for searching,
adding at the end, removing any
item, and getting any item.

© A+ Computer Science - www.apluscompsci.com

traverse all spots O(N)

search for an item O(N) or O(Log2N)

remove any item O(N)
 location unknown

get any item O(1)
 location unknown

add item at the end O(1)

add item at the front O(N)

ArrayList is implemented with an array.

If the array is
sorted, a binary
search would be
the best choice
and result in a
log2N runtime.

© A+ Computer Science - www.apluscompsci.com

traverse all spots O(N)

search for an item O(N)

remove any item O(N)
 location unknown

get any item O(N)
 location unknown

add item at the end O(1)

add item at the front O(1)

LinkedList is implemented with a double linked list.

© A+ Computer Science - www.apluscompsci.com

 Tree Set Hash Set

add O(Log2N) O(1)

remove O(Log2N) O(1)

contains O(Log2N) O(1)

TreeSets are implemented with balanced binary trees
(red/black trees).

HashSets are implemented with hash tables.

© A+ Computer Science - www.apluscompsci.com

 Tree Map Hash Map

put O(Log2N) O(1)

get O(Log2N) O(1)

containsKey O(Log2N) O(1)

TreeMaps are implemented with balanced binary trees
(red/black trees).

HashMaps are implemented with hash tables.

© A+ Computer Science - www.apluscompsci.com

© A+ Computer Science - www.apluscompsci.com

int n = ray.size();
Set s = new HashSet();
for(int i=0; i<n; i++)
 s.add(ray.get(i));

Big O Notation – N

The work needed to add each element
of ray to s would be N*1. Ray has N items
and add() for HashSet has an O(1) bigO.

© A+ Computer Science - www.apluscompsci.com

int n = ray.size();
Set s = new TreeSet();
for(int i=0; i<n; i++)
 s.add(ray.get(i));

Big O Notation – N*Log2(N)

The work needed to add each element
of ray to s would be N * log2N. Ray has N
items and add() for TreeSet has a log2 bigO.

© A+ Computer Science - www.apluscompsci.com

Name Best Cast Avg. Case Worst

Linear/Sequential Search O(1) O(N) O(N)

Binary Search O(1) O(log2 N) O(log2 N)

All searches have a best case run time of O(1) if written properly.
You have to look at the code to determine if the search has the
ability to find the item and return immediately. If this case is present,
the algorithm can have a best case of O(1).

© A+ Computer Science - www.apluscompsci.com

Name Best Case Avg. Case Worst

Selection Sort O(N2) O(N2) O(N2)

Bubble Sort O(N2) O(N2) O(N2)

Insertion Sort O(N) (@) O(N2) O(N2)

@ If the data is sorted, Insertion sort will only make one pass
 through the list.

© A+ Computer Science - www.apluscompsci.com

Name Best Case Avg. Case Worst

Merge Sort O(N log2 N) O(N log2 N) O(N log2 N)

QuickSort O(N log2 N) O(N log2 N) O(N2) (@)

Heap Sort O(N log2 N) O(N log2 N) O(N log2 N)

@ QuickSort can degenerate to N2. It typically will degenerate on
sorted data if using a left or right pivot. Using a median pivot will
help tremendously, but QuickSort can still degenerate on certain
sets of data. The split position determines how QuickSort behaves.

© A+ Computer Science - www.apluscompsci.com

N

N2

time

items

log2N

This is very general.

N*log2N

1

